Al-rich metapelites from the Mashan khondalite series are characterized by the assem- blage Spl+Grt+Sil+Crd+Bt+Pi (An72)+Kfs+Quartz+graphite. Large amounts of spinel+quartz assem- blages occur as inclusions in garnet and prismatic sillimanite in the Ai-rich metapelites of the Mashan complex, NE China. The chemical composition of spinel is characterized by Zn-rich (Xzn=0.33-0.40. Xzn=Zn/Zn+Mg+Fe*) (Fe*=FeZ++Fe3+) and Fe3+ rich (up to 0.31 p.f.u.). The characteristic chemical composition and the mineral association indicated that the formation of spinel and quartz assemblage may be due to the breakdown of Zn-rich staurolite. The geothermobarometers studies show that the peak temperature of the Mashan complex is around 820 ℃ and the peak pressures is 8.0 kbar. The Mashan complex shows a typical orogen style P-T path.
Blueschist accompanied by pelitic schist expose along the Xinlin-Xiguitu fault in the Toudaoqiao area, northeastern China. In this paper, the blueschist is systematically studied on the petrography and mineral chemistry. The amphiboles in the blueschist are zoned from winchite core to magnesioriebeckite/glaucophane rim to winchite outermost rim. The peak metamorphic conditions are defined by the mineral assemblage of magnesioriebeckite/glaucophane, epidote, high-Si phengite(Si〈7.1), chlorite, albite, hematite and quartz, indicating an epidote-blueschist facies metamorphism. The P-T conditions are estimated as T=350–400 ℃ and P=10-12 kbar. The occurrence of the blueschist along the Xinlin-Xiguitu fault strongly suggests the fault is the suture between the Ergun and the Xing'an blocks situated in the eastern portions of the Central Asia Orogenic Belt(CAOB).
Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectonic regime and Mongolian-Okhotsk tectonic regime. The Songliao and Jiamusi blocks are located in the easternmost part of the CAOB and are the key region to solve the problem about overprinting processes of multiple tectonic regimes. It is generally believed that the Mudanjiang Ocean between the two blocks was finally closed in the Mesozoic, but the Paleozoic magmatism also developed along the Mudanjiang suture zone, while on both sides of the suture zone, there were comparable Paleozoic strata, indicating that the two blocks had converged during the Paleozoic, and the evolution history of the two blocks in the Late Paleozoic remains controversial. The Carboniferous-Permian terrestrial strata mainly developed in Binxian, Wuchang and Tieli on Songliao Block, Baoqing and Mishan on Jiamusi Block. Samples from the Songliao and Jiamusi blocks in the Late Carboniferous-Early Permian and Late Permian are collected for comparative analysis. The LAICP-MS zircon U-Pb dating results show that the maximum depositional age of Middle Permian Tumenling Formation and Late Permian Hongshan Formation in Songliao Block is ~260 Ma, while that of Tatouhe Formation and Carboniferous strata in Jiamusi Block are ~290 Ma and ~300 Ma, respectively, which supports the previous stratigraphic division scheme. The age peaks of ~290-300 Ma, ~400 Ma, ~500 Ma appeared in the Late Carboniferous to Early Permian strata of Jiamusi Block and the Middle Permian strata of Songliao Block. The age peak of ~500 Ma in the Middle Permian strata of Songliao Block may come from the Cambrian basement, Mashan Complex, of Jiamusi Block, while the age peaks of ~420-440 Ma in the Carboniferous strata of Jiamusi Block may come from the Silurian magmatic arc in Zhangguangcai Range in the eastern margin of Songliao Block, reflects the history that they had