The Minimum Fragments Removal (MFR) problem is one of the haplotyping problems: given a set of fragments, remove the minimum number of fragments so that the resulting fragments can be partitioned into k classes of non-conflicting subsets. In this paper, we formulate the κ-MFR problem as an integer linear programming problem, and develop a dynamic programming approach to solve the κ-MFR problem for both the gapless and gap eases.
本文讨论了允许长度估计误差和杂交错误的更实际SBH(Sequencing by Hybridization)最优重构问题.通过对SBH谱集中k-tuple之间的相关信息的分析和最优重构性质的讨论,我们得到若干非最优解的删除法则和最优解的判定法则,并获得了一个能够极大地减少最优解重构随意性的动态规划计算方法.由此,我们给出了该SBH问题的一个新重构算法.该算法既允许SBH谱集含有一般杂交实验中可能出现的探针错配所产生的正错误,也允许目标DNA序列长度有估计误差,所以本文的算法具有更一般的适应性和实用性.模拟计算结果表明我们的算法也是十分有效的(即使在谱集有多达100%的正错误情况).