Coastal dune is a common aeolian geomorphology in a sandy coast,which records the evolution process of the aeolian landscape system and reflects the complex interaction among land surface,atmosphere and ocean.Coast is a sensitive area to global climate change.Restricted by chronology,most previous researches in China focused only on the cause of formation of coastal dunes.In recent years,the development of optically stimulated luminescence (OSL) dating provides a good method and acts as a carrier for coastal dunes to paleoclimate and paleoenvironmental studies.In this study,we selected an aeolian dune at the Anshan archaeological site,Fujian,China as the research object based on field observations.For determining their sedimentary stages and the primary influencing factors,we used the OSL dating method to construct a chronological framework for the aeolian dune.In addition,the sizes of grains were analyzed for identifying factors influencing the winter monsoon during the Medieval Warm Period (MWP) and the Little Ice Age (LIA) in this area.The results showed that the deposition of the aeolian dune was closely related to variations in the winter monsoon intensity.The changes of the winter monsoon were similar to the tendency of the East Asian winter monsoon,although there were several sub-fluctuations.From an overall perspective,the winter monsoon was strengthened during the MWP (1050–1300) .The results of a power spectrum analysis showed that the intensity of the East Asian winter monsoon is correlated with sunspot activity.
JIN JianhuiLI ZhizhongJIANG Fengdeng taoHU Fan'genLING Zhiyong
The "Old Red Sand" is widely distributed along the coast of Fujian Province, China. Most studies have been carried out from as- pects of the origin, age and laterization of the "Old Red Sand", but this paper focused on reconstructing the history of the Asian Winter Monsoon change. On the basis of granulometric analysis of high-resohition samples, we have obtained environmental sen- sitive grain size component (ESGSC) from the Qingfeng (QF) profile by using the grain size-standard deviation method, which proves that the selected ESGSC is an important climate proxy. The mean grain size of this ESGSC could be used to reconstruct the East Asian Winter Monsoon (EAWM) intensity. As such, the history of the EAWM change since 44.0 ka reconstructed here reveals three main phases based on chronology dates of previous researches: (1) 44.0-25.5 ka B.P., the EAWM is relatively weak but increases gradually with fluctuations; (2) 25.5-15.5 ka B.P., relatively strong with high frequency fluctuations; (3) 15.5-7.1 ka B.P., with a weaker winter monsoon, but during 11-10 ka B.P. is remarkably enhanced. The EAWM recorded by mean grain size of the two neighboring sections have a better repeatability, so the millennial scales oscillation should be a reliable signal of the EAWM intensity. The climate recorded by ESGSC of the QF "Old Red Sand" compared to 6-80 of Huhi Cave stalagmites and Greenland GISP2 ice cores shows a good consistency, especially in detail, the YD event and four Heinrich events are all recorded, but the signal of D-O cycles was relatively weak.