The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.
The consolidation process of SiCf/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plastic contact deformation of the representative aligned coated fibers, the consolidation maps delineating the time–temperature–pressure relationship for full densification were constructed. Both the flow coefficient and the contact area coefficient used to describe the contact deformation were calculated according to the model. In addition, the effect of fiber content on matrix stress distribution was analyzed. The results show that fiber content is a significant factor that influences the densification process. Higher fiber content will lower the consolidation rate.
Xiang-Hong XuYan-Qing YangXian LuoLin QinJu-Hong LouQing Sun
Microstructure and texture evolution during hot compression of Ti6Al4 V alloy with an initial equiaxed microstructure were studied in the temperature range of 850-930 °C, strain rate range of 0.01-1 s-1 and engineering compressive strain of 70%. The results indicate that when temperature is below 900 °C and strain rate is higher than 0.1 s-1, the microstructure is mainly composed of elongated α grains. While deforming at higher temperatures and lower strain rates, dynamic recrystallization takes place. Electron back scattered diffraction(EBSD) result shows that during dynamic recrystallization, subgrain boundaries absorb dislocations and the recrystallized grains with high angle grain boundary form. At 930 °C dynamic recrystallization has basically completed, and needlelike α phase forms after water quenching. Pole figure analysis indicates that compared with the initial specimen, textures below 930 °C are weaker, while at 930 °C they are stronger.