The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the basis of the transformation operators in the space of discrete Hamiltonians. The Lie transformations acting on the lattice, as well as the equations and the determining equations of the Lie symmetries are obtained for the nonholonomic Hamiltonian systems. The discrete analogue of the Noether conserved quantity is constructed by using the Lie point symmetries. An example is discussed to illustrate the results.
A backstepping approach is proposed for the synchronization of chain networks of multi-spatiotemporal chaotic systems with topologically equivalent structures. The synchronization of multi-spatiotemporal chaotic systems is imple- merited by adding the control only to a terminal node, and the controller is designed via a corresponding update law. The control law is applied to spatiotemporal Gray-Scott systems. Numerical results demonstrate the effectiveness and the feasibility of the proposed approach.