The objectives of lunar satellite remote sensing are to study lunar surface characteristics, inner structure, and its evolution history. The contents of TiO 2 and FeO are assessed from Clementine UV/VIS data for Sinus Iridum. The geologic stratigraphic units and crates are interpreted visually based on SELENE Terrain Camera (TC) images and the spatial resolution of which is up to 10 m. And the geologic ages of different stratigraphic units are calculated by the crater size-frequency distributions measurements. The gravity anomaly is generated from SELENE gravity model (SGM90d) to show its difference from Mare Imbrium. Furthermore, the thickness of lunar regolith is also derived from microwave radiometer data of Chang’e-1 satellite. Integrating these results, it shows that the Sinus Iridum is different from the Mare Imbrium in inner structure and surface sedimentation. And its history of subsidence, deposition, volcanism, and impact is described. It makes sense to the future soft-landing and sampling at potential Sinus Iridum by remote sensing geologic analysis.
CHEN ShengBo , MENG ZhiGuo, CUI TengFei, LIAN Yi, WANG JingRan & ZHANG XuQing College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
The dielectric constant of the lunar regolith can directly influence the reflection coefficient and the trans-mission coefficient of the Moon′s surface, and plays an important role in the Moon research. In order to study the di-electric properties of the lunar regolith, the lunar regolith simulant was made according to the making procedure of the CAS-1 simulant made by Chinese Academy of Sciences. Then the dielectric constants of the lunar regolith simulant were measured with 85070E Aiglent Microwave Network Analyzer in the frequency ranging from 0.2 GHz to 20.0 GHz and at temperature of 25.1℃, 17.7℃, 13.1℃, 11.5℃, 9.6℃, 8.0℃, 4.1℃, -0.3℃, -4.7℃, -9.5℃, -18.7℃, -27.7℃, and -32.6℃, respectively. The Odelevsky model was employed to remove the influence of water in the air on the final effective dielectric constants. The results indicate that frequency and temperature have apparent influences on the dielectric constants of the lunar regolith simulant. The real parts of the dielectric constants increase fast over the range of 0.2 GHz to 3.0 GHz, but decrease slowly over the range of 4.0 GHz to 20.0 GHz. The opposite phenomenon occurs in the imaginary parts. The influences of the frequency and temperature on the brightness temperature were also estimated based on the radiative transfer equation. The result shows that the variation of the frequency and temperature results in great changes of the microwave brightness temperature emitting from the lunar regolith.
MENG ZhiguoCHEN ShengboDU XiaojuanEDWARD Matthew Osei JnrLU PengWANG Zijun