In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magnetic separation process on bench scale. The results show that increasing the basicity (mass ratio of CaO to SIO2) of nickel slag facilitates the enrichment of nickel and copper The process parameters for selective reduction were optimized as follows: basicity of 0.15, reducing at 1200 ~C for 20 min, 5% coal on a dried slag mass base. The grinding-magnetic separation results of reduced briquettes show that concentrate containing 3.25%Ni, 1.20%Cu and 75.26%Fe is obtained and selective enrichment is achieved with a recovery of 82.20%, 80.00% for nickel and copper respectively, while the recovery of iron is only 42.17%. The S and P contents are not reduced obviously and further research may be needed to examine the behaviors of S and P in the process.
The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,was conducted by using pelletizing,rotary kiln reduction and magnetic separation process on a semi industrial scale,and the effects of reduction duration,mass ratio of coal to pellets(C/P),the types of magnetic separator,the sections of grinding-separation and the grinding fineness on the recovery of Ni and Fe were examined.It is shown that nickel concentrate containing 3.13 % Ni and 59.20 % Fe was achieved at recoveries of 84.36 % and 71.51% for Ni and Fe,respectively under the following conditions:reducing at (1120±40) ℃ for 120 min,C/P being 1.0,wet grinding of reduced pellets up to 70%-87% passing 0.074 mm and a magnetic field intensity of 238.8 kA/m during the first section of grinding-magnetic separation,and a grinding fineness of 84%-91% passing 0.045 mm and a magnetic intensity of 39.8 kA/m during the second section of grinding-magnetic separation.The enriched Ni containing concentrate has a low content of S and P,and can be used for further processing to produce high-grade ferronickel alloy.
To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical microscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA).According to EPMA results,the mineral includes 80% goethite((Fe,Ni,Al)O(OH)) with 0.87% Ni,15% silicate minerals with lizardite((Mg,Fe,Ni)3Si2O5(OH)) and olivine((Mg,Fe,Ni)2SiO4),and 1.19% Ni,and other minor phases,such as hematite,maghemite,chromite and quartz,and no Ni was detected.The mineralogy of the laterite ore indicates that due to the complicated association of the various phases and the variable distribution of Ni,this refractory laterite ore can not be upgraded by traditional physical beneficiation processes.