In this paper,we study conformal vector fields on a Randers manifold with certain curvature properties.In particular,we completely determine conformal vector fields on a Randers manifold of weakly isotropic flag curvature.
We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on S^3 with Ric = 2F^2, Ric = 0 and Ric =-2F^2, respectively. This family of metrics provides an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not.