A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved numerically by the finite difference method. Numerical results show that the new method is accurate enough, can be efficiently solved with little programming effort, and can be applied to the calculation of wave radiation stress for large coastal areas.
Based on the time dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation, and then a practical method for the simulation of wave height and wave set- up in nearshore regions is presented. The variation of the complex wave amplitude is numerically simulated by use of the parabolic mild slope equation including the effect of wave energy dissipation due to wave breaking. The components of wave radiation stress are calculated subsequently by new expressions for them according to the obtained complex wave amplitude, and then the depth-averaged equation is applied to the calculation of wave set-up due to wave breaking. Numerical results are in good agreement with experimental data, showing that the expression for the energy dissipation factor is reasonable and that the new method is effective for the simulation of wave set-up due to wave breaking in nearshore regions.