The Cauchy problem for the 3D incompressible magneto-hydrodynamics equations in crit- cal spaces is considered. We first prove the global well-posedness of mild solution for the system in some time dependent spaces. Furthermore, we obtain analyticity of the solution.
In this paper, we are concerned with Cuuchy problem for the multi-dimensional (N 〉_ 3) non-isentropic full compressible magnetohydrodynamic equations. We prove the existence and unique- ness of a global strong solution to the system for the initial data close to a stable equilibrium state in critical Besov spaces. Our method is mainly based on the uniform estimates in Besov spaces for the proper linearized system with convective terms.