For mobile anchor node static path planning cannot accord the actual distribution of node for dynamic adjustment. We take advantage of the high localization accuracy and low computational complexity of ad-hoc localization system( AHLos)algorithm. This article introduces mobile anchor nodes instead of the traditional fixed anchor nodes to improve the algorithm. The result shows that, through introduce the mobile anchor node, the information of initial anchor nodes can be configured more flexible.Meanwhile,with the use of the approximate location and the transition path,the distance and energy consumption of the mobile anchor node is greatly reduced.
The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.
Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control systems, without considering the pervasive nonlinearities(e.g. valve stiction) present in most industrial control systems. In this work, a novel probability distribution distance based index is proposed to monitor the performance of non-linear control systems. The proposed method uses Hellinger distance to evaluate change of control system performance. Several simulation examples are given to illustrate the effectiveness of the proposed method.
An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network(NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.