A combination of X-ray powder diffraction, thermogravimetric analysis, diffuse reflection infrared Fourier transform, and ^31p magic-angle spinning nuclear magnetic resonance techniques with density function computation was used to elucidate the products and mecha- nism of the reactions among silica, H3PO4, and NaH2PO4 during the preparation of silica supported H3PO4 and NaH2PO4 catalysts. The spectral test results indicate that besides polyphosphoric acid, silicon phosphates on silica supported H3PO4 are also formed. On silica supported NaH2PO4 only sodium polyphosphates are present. Density functional theory (DFT) simulations indicate that in the initial stage, reaction of H3PO4 with silanol groups on the silica support is more favorable than that between H3PO4 itself. In contrast, dimerization and trimerization of NaH2PO4 are predicted to be the predominant initial reactions for the silica supported NaH2PO4 catalyst.
Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.