The general expressions of the average dissipative and dipole forces acting on a A-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in ID optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of hГ/(2kB) due to the orbital angular momentum lh of the HBB.
This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field, which is generated by a plate capacitor composed of two infinite parallel metal plates. The spatial distributions of the electrostatic field produced by the combination of the charged wire and the plate capacitor and the corresponding Stark potentials (including dipole forces) for metastable CO molecules are calculated, the relationships between the electric field and the parameters of our charged-wire layout are analysed. It also studies the influences of the insulator on the electric field distribution and the discharge effect. This study shows that the proposed scheme can be used to guide cold polar molecules in the weak-field - seeking states, and to form various molecule-optical elements, such as molecular funnel, molecular beam-splitters and molecule interferometer, even to construct a variety of integrated molecule-optical elements and their molecule chips.
We propose some new schemes to constitute two-dimensional (2D) array of multi-well optical dipole traps for cold atoms (or molecules) by using an optical system consisting of a binary 7r-phase grating and a 2D array of rectangle microlens. We calculate the intensity distribution of each optical well in 2D array of multi-well traps and its geometric parameters and so on. The proposed 2D array of multi-well traps can be used to form novel 2D optical lattices with cold atoms (or molecules), and form various novel optical crystals with cold atoms (or molecules), or to perform quantum computing and quantum information processing on an atom chip, even to realize an array of all-optical multi-well atomic (or molecular) Bose- Einstein condensates (BECs) on an all-optical integrated atom (or molecule) chip.
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.
We have calculated the Stark effect of CH3F molecules in external electrical fields, the rotational population of supersonic CH3F molecules in different quantum states, and analyse the motion of weak-field-seeking CH3F molecules in a st'ate |J = 1, KM = -1) inside the electrical field of a Stark decelerator by using a simple analytical model. Threedimensional Monte Carlo simulation is performed to simulate the dynamical slowing process of molecules through the decelerator, and the results are compared with those obtained from the analytical model, including the phase stability, slowing efficiency as well as the translational temperature of the slowed molecular packet. Our study shows that with a modest dipole moment (-1.85 Debye) and a relatively slight molecular weight (-34.03), CH3F molecules in a state |J= 1, KM = -1) are a good candidate for slowing with electrostatic field. With high voltages of ±10 kV applied on the decelerator, molecules of 370 m/s can be brought to a standstill within 200 slowing stages.