In this article, we present a hepatitis B epidemic model with saturated incidence.The dynamic behaviors of the deterministic and stochastic system are studied. To thisend, we first establish the local and global stability conditions of the equilibrium of thedeterministic model. Second, by constructing suitable stochastic Lyapunov functions, thesufficient conditions for the existence of ergodic stationary distribution as well as extinctionof hepatitis B are obtained.
This article addresses a stochastic ratio-dependent predator-prey system with Leslie-Gower and Holling type II schemes. Firstly, the existence of the global positive solution is shown by the comparison theorem of stochastic differential equations. Secondly, in the case of persistence, we prove that there exists a ergodic stationary distribution. Finally, numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.
In this article, we consider a stochastic SIR model and show that the distributions of the solutions of the system are absolutely continuous. Furthermore, we analyze long-time behaviour of densities of the distributions of the solution. We prove that the densities can converge in L1 to an invariant density.
This paper is concerned with a stochastic HBV infection model with logistic growth. First, by constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of ergodic stationary distribution of the solution to the HBV infection model. Then we obtain sufficient conditions for extinction of the disease. The stationary distribution shows that the disease can become persistent in vivo.