In this paper, we prove that some volume-preserving almost Anosov systems are ergodic if they are essentially accessible. The key idea is that there are stable and unstable manifolds with uniform size on the orbits Of the hyperbolic points for these systems.
In this paper, we define robust weak ergodicity and study the relation between robust weak ergodicity and stable ergodicity for conservative partially hyperbolic systems. We prove that a C^r(r 〉 1) conservative partially hyperbolic diffeomorphism is stably ergodic if it is robustly weakly ergodic and has positive (or negative) central exponents on a positive measure set. Furthermore, if the condition of robust weak ergodicity is replaced by weak ergodicity, then the diffeomophism is an almost stably ergodic system. Additionally, we show in dimension three, a C^r(r 〉 1) conservative partially hyperbolic diffeomorphism can be approximated by stably ergodic systems if it is robustly weakly ergodic and robustly has non-zero central exponents.