随着众多具有传感功能的智能手机和可穿戴设备的普及,基于位置的服务得到了快速发展,其中基于位置的社交网络(location-based social networks,LBSN)逐渐被大多数人所接受,基于位置社交网络可以为人们提供兴趣点推荐服务。为了提供更加精准的兴趣点推荐服务,提出了一种融合的算法模型。通过隐语义分析算法来充分挖掘用户的历史行为,使用基于邻域的方法结合好友和地理位置等因素,然后在统一的框架中融合这两种推荐方式的结果,实现了对用户行为更好的预测。实验结果表明,提出的兴趣点推荐方法拥有较好的准确率和召回率。
随着无线传感器网络的高速发展和多种移动智能设备的普及,移动群智感知(mobile crowd sensing,MCS)成为移动计算的核心。利用群智感知可完成大规模、复杂环境及社会感知任务,其中任务分发是这种应用中的一个重要环节。针对任务分发过程中存在感知环境复杂、用户数量达不到要求、收集数据质量低等问题,提出一种基于社交属性及有效用户计算的任务分发机制(effective user calculation,EUC)。该机制具有根据任务来筛选用户的特点,从用户角度看,EUC考虑了用户的社会性,由用户的社交网络传递相关信息来增加平台的有效用户数;从平台的角度看,EUC可根据任务的接收和提交情况动态调整有效用户的积分,从而保障整个系统的有效用户数。理论分析和实验结果表明,所提出的机制可提高系统的任务分发效率,并改善了收集数据的质量。