We synthesize the perovskite compound Sm Cr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exchange bias field are observed at the magnetization compensation temperatures 29.6 K and 96.2 K. It is demonstrated that the occurrence of the exchange bias originates from the antiferromagnetic coupling between the Cr-rich and Fe–Cr regions, of which the net magnetization is temperature-dependent. These results imply that there are potential applications in single systems with sign reversals of both magnetization and exchange bias.
In this letter, we investigate the magnetic and ferroelectric properties of polycrystalline MnW1-xMoxO4 (x = 0, 0.05, 0.10, 0.20) compounds. The substitution of nonmagnetic Mo6+ ions for W6+ ions modifies the magnetic transition tem- peratures of MnW1-xMoxO4 by changing the Mn-O-Mn bond. As a result, distinct ferroelectric properties and enhanced magnetoelectric effects are observed in Mo6+-doped MnWO4 compounds. The effects of substitution of Mo6+ ions on magnetic properties and magnetoelectric coupling are discussed.
Polycrystalline ferroelectric Bi3.25La0.75Ti3O12 thin films are prepared on Pt/Ti/SiO2/Si substrates by the conventional metalorganic decomposition method. It is observed that with the increase of switching pulse width, the remnant polarisation and the coercive field increase. A wider switching pulse can result in poorer fatigue properties, which comes from more charged defects diffusing to and being trapped on domain walls. On the other hand, when the compressive stress is applied to films, the fatigue properties can be improved. This phenomenon is due to the reorientation of domains under stress.
The semi-quantum two-orbital exchange model is used to investigate the effect of small rare-earth ion substitution on orthorhombic RMnO 3 with A-type antiferromagnetic order,using the Monte Carlo algorithm,exact diagonalization,and zero-temperature optimization approaches.It is revealed that the substitution results in a rich multiferroic phase diagram where the coexisting A-type antiferromagnetic phase and spiral spin phase,pure spiral spin phase,coexisting spiral spin phase,the E-type antiferromagnetic phase,and the pure E-type antiferromagnetic phase emerge in sequence.The multiferroic phase transitions modulate substantially the electric polarization,which is consistent qualitatively with recent experiments.