Food resources play an important role in the regulation of animals’ physiology and behavior. We investigated the effect of short-term food restriction on metabolic thermogenesis of Chinese bulbuls(Pycnonotus sinensis) by measuring changes in body mass, body fat, basic metabolic rate(BMR), and organ mass of wild-caught Chinese bulbuls from Wenzhou, China. Short-term food restriction induced a significant decrease in body mass and body fat but body mass returned to normal levels soon after food was no longer restricted. Food restriction caused a significant reduction in BMR after 7 days(P〈0.05), which returned to normal levels after food restriction ceased. Log total BMR was positively correlated with log body mass(r2=0.126, P〈0.05). The dry masses of livers and the digestive tract were higher in birds that had been subject to temporary food restriction than in control birds and those subject to continual food restriction(P〈0.001 and P〈0.05, respectively). There was also significant differences in the dry mass of the lungs(P〈0.05), heart(P〈0.01), and spleen(P〈0.05) in birds subject to short-term food restriction compared to control birds and those subject to continual food restriction. BMR was positively correlated with body and organ(heart, kidney and stomach) mass. These results suggest that the Chinese bulbul adjusts to restricted food availability by utilizing its energy reserves, lowering its BMR and changing the weight of various internal organs so as to balance total energy requirements. These may all be survival strategies that allow birds to cope with unpredictable variation in food abundance.
Qing-Jian LIANGLei ZHAOJia-Qi WANGQian CHENWei-Hong ZHENGJin-Song LIU
Background: Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. In the present study, we measured diurnal variations in body mass, body temperature and basal metabolic rate(BMR) for seasonally acclimatized Hwameis(Garrulax canorus).Methods: Body mass was determined with a Sartorius balance. Metabolic rates of Hwameis were measured with an open-circuit respirometry system.Results: Body masses varied with time of day and were higher in daytime for Hwameis in both summer and winter, and body masses in winter were higher compared to that in summer. Body temperatures of Hwameis were higher in daytime, and the summer acclimatized birds had significantly higher body temperatures compared to the winter acclimatized birds. BMRs of Hwameis were significantly higher during the daytime compared to the nighttime of the daily cycle in both summer and winter, and Hwameis in winter had significantly higher BMRs than that in summer.Conclusions: This result showed that Hwameis rely mostly on metabolic capacity to maintain their body temperature in cold weathers, and Hwameis exhibited daily and seasonal flexibility in morphology and physiology which is important under changing environmental conditions.
Lidan ZhaoRunmei WangYunan WuMengsi WuWeihong ZhengJinsong Liu
Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible energy intake(DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls(Pycnonotus sinensis) caught in the wild at Wenzhou, China.Methods: Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass.Results: Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter.The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure in winter, necessitating increased food consumption.Conclusions: This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.
Mengsi WuYuchao XiaoFang YangLimeng ZhouWeihong ZhengJinsong Liu
Chinese bulbuls (Pycnonotus sinensis) are small passerine birds that inhabit areas of central, southern and eastern China. Previous observations suggest that flee-living individuals of this species may change their food intake in response to seasonal changes in ambient temperature. In the present study, we randomly assigned Chinese bulbuls to either a 30 ~C or 10 ~C group, and measured their body mass (BM), body temperature, gross energy intake (GEl), digestible energy intake (DEI), and the length and mass of their digestive tracts over 28 days of acclimation at these temperatures. As predicted, birds in the 30 ℃ group had lower body mass, GEI and DEI relative to those in the 10 ℃ group. The length and mass of the digestive tract was also lower in the 30 ℃ group and trends in these parameters were positively correlated with BM, GEl and DEI. These results suggest that Chinese bulbuls reduced their absolute energy demands at relatively high temperatures by decreasing their body mass, GEI and DEI, and digestive tract size.
Yu-Nan WULin LINYu-Chao XIAOLi-Meng ZHOUMeng-Si WUHui-Ying ZHANGJin-Song LIU
To better understand the physiological characteristics of the silky starling(Sturnus sericeus), its body temperature(Tb), basal metabolic rate(BMR), evaporative water loss(EWL) and thermal conductance(C) elicited by different ambient temperatures(Ta)(5-30 ℃) were determined in the present study. Our results showed that they have a high Tb(41.6±0.1 ℃), a wide thermal neutral zone(TNZ)(20-27.5 ℃) and a relatively low BMR within the TNZ(3.37±0.17 mL O2/g·h). The EWL was nearly stable below the TNZ(0.91±0.07 mg H2O/g·h) but increased remarkably within and above the TNZ. The C was constant below the TNZ, with a minimum value of 0.14±0.01 mL O2/g·h·℃. These findings indicate that the BMR, Tb and EWL of the silky starling were all affected by Ta, especially when Ta was below 20℃ and the EWL plays an important role in thermal regulation.
Huan-Huan BAOQing-Jian LIANGHong-Lei ZHUXiao-Qiu ZHOUWei-Hong ZHENGJin-Song LIU