您的位置: 专家智库 > >

国家自然科学基金(10404037)

作品数:3 被引量:0H指数:0
相关作者:王正川更多>>
相关机构:中国科学院研究生院更多>>
发文基金:国家自然科学基金中国科学院研究生院科研启动基金更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 2篇BOLTZM...
  • 1篇量子修正
  • 1篇POTENT...
  • 1篇QUANTU...
  • 1篇WIGNER
  • 1篇WIGNER...
  • 1篇ANALYT...
  • 1篇AVERAG...
  • 1篇BOLTZM...
  • 1篇CORREC...
  • 1篇EQUATI...
  • 1篇FUNCTI...
  • 1篇MIS
  • 1篇SELF-C...

机构

  • 1篇中国科学院研...

作者

  • 1篇王正川

传媒

  • 1篇Chines...
  • 1篇中国科学(G...
  • 1篇Scienc...

年份

  • 1篇2009
  • 2篇2008
3 条 记 录,以下是 1-3
排序方式:
Analytical solution of the Boltzmann-Poisson equation and its application to MIS tunneling junctions
2009年
In order to consider quantum transport under the influence of an electron-electron (e-e) interaction in a mesoscopic conductor,the Boltzmann equation and Poisson equation are investigated jointly.The analytical expressions of the distribution function for the Boltzmann equation and the self-consistent average potential concerned with e-e interaction are obtained,and the dielectric function appearing in the self-consistent average potential is naturally generalized beyond the Thomas-Fermi approximation.Then we apply these results to the tunneling junctions of a metal-insulator-semiconductor (MIS) in which the electrons are accumulated near the interface of the semiconductor,and we find that the e-e interaction plays an important role in the transport procedure of this system. The electronic density,electric current as well as screening Coulombic potential in this case are studied,and we reveal the time and position dependence of these physical quantities explicitly affected by the e-e interaction.
张礼智王正川
Boltzmann方程的量子修正
2008年
讨论了经典玻尔兹曼分布函数的量子修正项及其满足的方程.我们将用于推导量子玻尔兹曼方程的梯度近似中的普朗克常数明显地写出,并且将量子Wigner分布函数用普朗克常数展开,经过推导就可以得到量子修正项所满足的方程.量子Wigner分布函数的普朗克常数展开式中的一阶和高阶项正好是量子修正项,它们可具有负值,而零阶项则具有正值.这样我们自然在量子Wigner分布函数中分离出正的分布函数,避免了用Husimi方法做粗粒平均取得正值的传统框架.另外我们也用量子Wigner分布函数普朗克常数展开的方法讨论了量子热力学熵的经典极限这一问题.
王正川M.Levy Peter
关键词:WIGNER分布函数
Quantum corrections for Boltzmann equation
2008年
We present the lowest order quantum correction to the semiclassical Boltzmann distribution function,and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation,and the quantum Wigner distribution function is expanded in pow-ers of Planck constant,too. The negative quantum correlation in the Wigner dis-tribution function which is just the quantum correction terms is naturally singled out,thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.
M. Levy PETER
关键词:QUANTUMBOLTZMANNEQUATIONWIGNERFUNCTIONQUANTUMCORRECTION
共1页<1>
聚类工具0