众所周知统计推断有三种理论:普遍承认的Neyman理论(频率学派),Bayes推断和信仰推断(Fiducial)。Bayes推断基于后验分布,由先验分布和样本分布求得。信仰推断是基于信仰分布(Confidence Distribution,简称CD),直接利用样本求得。两者推断方式一致,都是用分布函数作推断,称为分布推断。从分析传统的参数估计、假设检验特性来看,经典统计推断也可以视为分布推断。通常将置信上限看做置信度的函数。其反函数,即置信度是置信上界的函数,恰是分布函数,该分布恰是近年来引起许多学者兴趣的CD。在本文中,基于随机化估计(其分布是一CD)的概率密度函数,提出VDR检验。常见正态分布期望或方差的检验,多元正态分布期望的Hoteling检验等是其特例。VDR(vertical density representation)检验适合于多元分布参数检验,实现了非正态的多元线性变换分布族的参数检验。VDR构造的参数的置信域有最小Lebesgue测度。