Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the susceptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements.
Nonpolar (1120) a-plane GaN films have been grown by low-pressure metal-organic vapor deposition on r-plane (1102) sapphire substrate. The structural and electrical properties of the a-plane GaN films are investigated by high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and van der Pauw Hall measurement. It is found that the Hall voltage shows more anisotropy than that of the c-plane samples; furthermore, the mobility changes with the degree of the van der Pauw square diagonal to the c direction, which shows significant electrical anisotropy. Further research indicates that electron mobility is strongly influenced by edge dislocations.
This paper discusses the effect of N2 plasma treatment before dielectric deposition on the electrical performance of a Al203/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MISHEMT),with Al203 deposited by atomic layer deposition.The results indicated that the gate leakage was decreased two orders of magnitude after the Al203/AlGaN interface was pretreated by N2 plasma.Furthermore,effects of N2 plasma pretreatrnent on the electrical properties of the AlGaN/Al2O3 interface were investigated by x-ray photoelectron spectroscopy measurements and the interface quality between Al203 and AlGaN film was improved.
As a promising group III-nitride semiconductor material,InAlN ternary alloy has been attracted increasing interest and widespread research efforts for optoelectronic and electronic applications in the last 5 years.Following a literature survey of current status and progress of InAlNrelated studies,this paper provides a brief review of some recent developments in InAlN-related III-nitride research in Xidian University,which focuses on innovation of the material growth approach and device structure for electronic applications.A novel pulsed metal organic chemical vapor deposition(PMOCVD)was first adopted to epitaxy of InAlN-related heterostructures,and excellent crystalline and electrical properties were obtained.Furthermore,the first domestic InAlN-based high-electron mobility transistor(HEMT)was fabricated.Relying on the PMOCVD in combination with special GaN channel growth approach,high-quality InAlN/GaN double-channel HEMTs were successfully achieved for the first time.Additionally,other potentiality regarding to AlGaN channel was demonstrated through the successful realization of nearly lattice-matched InAlN/AlGaN heterostructures suitable for high-voltage switching applications.Finally,some advanced device structures and technologies including excellent work from several research groups around the world are summarized based on recent publications,showing the promising prospect of InAlN alloy to push group III-nitride electronic device performance even further.
An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self- developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an Al- GaN/GaN HEMT, Wilkinson power hybrids, a DC-bias circuit and microstrip matching circuits. For the stability of the amplifier module, special RC networks at the input and output, a resistor between the DC power supply and a transistor gate at the input and 3λ/4 Wilkinson power hybrids are used for the cancellation of low frequency self-oscillation and crosstalk of each amplifier. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5 dB with a power added efficiency of 17.9%, and an output power of 42.93 dBm; the power gain compression is 2 dB. For a four-way combined solid-state amplifier, the power combining efficiency is 67.5%. It is concluded that the reduction in combining efficiency results from the non-identical GaN HMET, the loss of the hybrid coupler and the circuit fabricating errors of each one-way amplifier.
Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature A1N interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Ruman measurements demonstrate that there exists more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423 eV to 3.438 eV and the frequency of the Raman shift of E2(TO) moves from 571.3 cm-1 to 572.9 cm-1 when the temperature of AlN interlayers increases from 700 ℃ to 1050 ℃. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.