Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.
Descending nociceptive modulation from the supraspinal structures plays an important role in cancer-induced bone pain (CIBP). Rostral ventromedial medulla (RVM) is a critical component of descending nociceptive facilitation circuitry, but so far the mechanisms are poorly known. In this study, we investigated the role of RVM glial activation in the descending nociceptive facilitation circuitry in a CIBP rat model. CIBP rats showed significant activation of microglia and astrocytes, and also up-regulation of phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) and pro-inflammatory mediators released by glial cells (IL-1β, IL-6, TNF-α and brain-derived neurotrophic factor) in the RVM. Stereotaxic microinjection of the glial inhibitors (minocycline and fluorocitrate) into CIBP rats’ RVM could reverse the glial activation and significantly attenuate mechanical allodynia in a time-dependent manner. RVM microinjection of p38 MAPK inhibitor (SB203580) abolished the activation of microglia, reversed the associated up-regulation of proinflammatory mediators and significantly attenuated mechanical allodynia. Taken together, these results suggest that RVM glial activation is involved in the pathogenesis of CIBP. RVM microglial p38 MAPK signaling pathway is activated and leads to the release of downstream pro-inflammatory mediators, which contribute to the descending facilitation of CIBP.