One hadean zircon from the Cambrian sandstone in the southern part of South China has a U-Pb age of 4107±29 Ma with ε Hf(t) value similar to that of the homochronous depleted mantle and Hf model age of 4102±21 Ma.This demonstrates the existence of hadean crustal remnant in South China.A close match between the U-Pb age and Hf model age with the highly position ε Hf(t) value indicates the growth and immediate reworking of juvenile crust from the depleted mantle at ca 4.1 Ga.The prominent "Pan-African" and Grenville zircons derived from the exotic sources were also found in the sample,which indicates a linking between South China and Gondwana in the Cambrian period.The southern part of South China has complex histories of crustal growth and tectonic evolution.
The West Pingdingshan Section in Chaohu, Anhui Province, has been extensively studied in recent years and become one of the classic Lower Triassic sequences well-clarified in multiple stratigraphies. Also it is an important section that defines the Smithian-Spathian (S-S) boundary within the Olenekian Stage. The S-S boundary strata at the section are restudied in high-resolution conodont biostratigraphy and carbon isotopes. The refined S-S boundary defined by the FAD of conodont Neospathodus pingdingshanensis is at 30 cm above the base of Bed 52, corresponding to a rapid diversification of conodonts. A sharp positive shift of δ13Ccarb curve co-occurs at the S-S boundary and it can be used as a key reference to define the boundary. The defined S-S boundary position and carbon isotopes curve can be well correlated globally.
Continual deep-water sediments from the late Early Devonian to the Late Permian extended in wide areas of western Guangxi. We analyzed the major, trace, and rare earth elements of the Upper Paleozoic cherts in Badu, western Guangxi. High non-terrigenous SiO2 contents (Sinon_ter/Sibulk(%)〉 80%) and pure chert components (〉 70%) indicate a large extent of silicifi- cation in the Upper Paleozoic cherts, except for the Upper Devonian-Lower Carboniferous Luzhai Formation cherts, which have lower non-terrigenous SiO2 contents (avg. 71.8%) and pure chert components (40%-70%). The Al/(AI+Fe+Mn) ratios and Feter/Febulk(%) values of samples from the lowest horizon of the Pingen Formation are 0.05-0.26, 13.1%-14.5%, respec- tively, indicating hydrothermal origins. All other samples show high Al/(Al+Fe+Mn) ratios (0.39±0.81) and high Feter/Febulk(%) values (23.1%-186.8%), indicating non-hydrothermal origins. The Pingen Formation and Liujiang Formation cherts show slightly-moderately negative Ce anomalies (0.71±0.07, 0.81±0.08, respectively) and higher Y/Ho ratios (33.49±1.27, 36.10±2.05, respectively) than PAAS. This suggests that these cherts were deposited in the open marine basin, rather than in the intracontinental rift basin as previously assumed. The Luzhai Formation cherts may be deposited near the seamount or sea- floor plateaus with no negative Ce anomalies (1.09±0.07) and no significant Y-Ho fractionation (Y/Ho=28.60±1.25). The Nandan Formation and Sidazhai Formation cherts were deposited in the open-ocean basin with moderately negative Ce anom- alies (0.67±0.08, 0.73±0.11, respectively) and high Y/Ho ratios (36.01±1.00, 32.00±2.25, respectively). On the basis of our studies about cherts, we conclude that the Youjiang Basin originated as part of the Paleo-Tethys that controlled the deposition- al environments of cherts during late Paleozoic. The rift of the Youjiang Basin had occurred at least since the Early-Middle Devonian.