您的位置: 专家智库 > >

国家自然科学基金(11001270)

作品数:5 被引量:6H指数:2
相关作者:宋松和唐玲艳更多>>
相关机构:国防科学技术大学空气动力学国家重点实验室更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家重点实验室开放基金更多>>
相关领域:理学环境科学与工程更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 4篇理学
  • 1篇环境科学与工...

主题

  • 3篇MULTI-...
  • 2篇SYMPLE...
  • 1篇多分辨
  • 1篇多分辨分析
  • 1篇守恒
  • 1篇守恒律
  • 1篇守恒律方程
  • 1篇双曲
  • 1篇双曲型
  • 1篇双曲型守恒律
  • 1篇双曲型守恒律...
  • 1篇自适
  • 1篇自适应
  • 1篇NONLIN...
  • 1篇PROPER...
  • 1篇SCHR
  • 1篇SCHROD...
  • 1篇SPLITT...
  • 1篇VARIAB...
  • 1篇WAVELE...

机构

  • 1篇国防科学技术...
  • 1篇空气动力学国...

作者

  • 1篇唐玲艳
  • 1篇宋松和

传媒

  • 2篇Chines...
  • 1篇计算物理
  • 1篇Commun...
  • 1篇Advanc...

年份

  • 2篇2014
  • 2篇2012
  • 1篇2011
5 条 记 录,以下是 1-5
排序方式:
Novel Conservative Methods for Schrödinger Equations with Variable Coefficients over Long Time
2014年
In this paper,we propose a wavelet collocation splitting(WCS)method,and a Fourier pseudospectral splitting(FPSS)method as comparison,for solving onedimensional and two-dimensional Schrödinger equations with variable coefficients in quantum mechanics.The two methods can preserve the intrinsic properties of original problems as much as possible.The splitting technique increases the computational efficiency.Meanwhile,the error estimation and some conservative properties are investigated.It is proved to preserve the charge conservation exactly.The global energy and momentum conservation laws can be preserved under several conditions.Numerical experiments are conducted during long time computations to show the performances of the proposed methods and verify the theoretical analysis.
Xu QianYaming ChenSonghe Song
Explicit multi-symplectic method for the Zakharov-Kuznetsov equation被引量:3
2012年
We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.
钱旭宋松和高二李伟斌
求解双曲型守恒律方程的一类自适应多分辨方法被引量:3
2014年
针对双曲型守恒律方程问题,发展一种有效的自适应多分辨分析方法.通过对嵌套网格上的数值解构造离散多分辨分析,建立小波系数与多层嵌套网格点之间的对应关系.对于小波系数较大的网格点采用高精度WENO格式计算,其余区域则直接采用多项式插值.数值试验表明,该方法在保持原规则网格方法的精度和分辨率的同时,显著地减少计算的CPU时间.
唐玲艳宋松和
关键词:自适应双曲型守恒律
Multi-SymplecticWavelet Collocation Method for Maxwell’s Equations
2011年
In this paper,we develop a multi-symplectic wavelet collocation method for three-dimensional(3-D)Maxwell’s equations.For the multi-symplectic formulation of the equations,wavelet collocation method based on autocorrelation functions is applied for spatial discretization and appropriate symplectic scheme is employed for time integration.Theoretical analysis shows that the proposed method is multi-symplectic,unconditionally stable and energy-preserving under periodic boundary conditions.The numerical dispersion relation is investigated.Combined with splitting scheme,an explicit splitting symplectic wavelet collocation method is also constructed.Numerical experiments illustrate that the proposed methods are efficient,have high spatial accuracy and can preserve energy conservation laws exactly.
Huajun ZhuSonghe SongYaming Chen
关键词:MULTI-SYMPLECTICSYMPLECTIC
Multi-symplectic wavelet splitting method for the strongly coupled Schrodinger system
2012年
We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.
钱旭陈亚铭高二宋松和
共1页<1>
聚类工具0