Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-Tc superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe2Pn2 (Pn = P, As, Sb) or FeeCh2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the Ko.sFe1.6+xSe2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed.
Snperconductivities and structural properties of Ti-Zr-Ta ternary alloys are extensively investigated. The TiZrTa sample has a cubic structure (β-phase) and shows a sharp superconducting transition at a critical temperature (To) of about 7.3 K. In addition, two series of Ti-Zr-Ta alloys, with nominal compositions of Ti65-xZr35Tax and TixZr65-xTa35 respectively,are prepared, and their superconductivities and crystal structures change regularly with the chemical composition. Our experimental study also indicates that the annealing processing of this kind of material can cause the transition temperature to increase and the highest Tc is observed to be about 8.3 K in annealed samples.