We introduce a new Euler-type scheme and its iterative algorithm for solving weakly coupled forward-backward stochastic differential equations (FBSDEs). Although the schemes share some common features with the ones proposed by C. Bender and J. Zhang [Ann. Appl. Probab., 2008, 18: 143-177], less computational work is needed for our method. For both our schemes and the ones proposed by Bender and Zhang, we rigorously obtain first-order error estimates, which improve the half-order error estimates of Bender and Zhang. Moreover, numerical tests are given to demonstrate the first-order accuracy of the schemes.
In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We theoretically prove that the schemes have second-order convergence rate.To demonstrate the effectiveness and the second-order convergence rate,numerical tests are given.