您的位置: 专家智库 > >

国家自然科学基金(11171125)

作品数:4 被引量:8H指数:2
相关作者:张诚坚张启峰邓定文更多>>
相关机构:华中科技大学南昌航空大学更多>>
发文基金:国家自然科学基金湖北省自然科学基金国家留学基金更多>>
相关领域:理学更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇理学

主题

  • 1篇时滞
  • 1篇双曲
  • 1篇双曲型
  • 1篇双曲型偏微分...
  • 1篇偏微分
  • 1篇偏微分方程
  • 1篇外推
  • 1篇微分
  • 1篇微分方程
  • 1篇唯一性
  • 1篇线性时滞
  • 1篇紧致差分方法
  • 1篇紧致差分格式
  • 1篇非线性
  • 1篇非线性时滞
  • 1篇PREDIC...
  • 1篇RICHAR...
  • 1篇RUNGE-...
  • 1篇SIMULA...
  • 1篇STRONG

机构

  • 1篇华中科技大学
  • 1篇南昌航空大学

作者

  • 1篇邓定文
  • 1篇张启峰
  • 1篇张诚坚

传媒

  • 1篇数值计算与计...
  • 1篇Journa...
  • 1篇Acta M...
  • 1篇Acta M...

年份

  • 1篇2015
  • 1篇2013
  • 2篇2012
4 条 记 录,以下是 1-4
排序方式:
STRONG PREDICTOR-CORRECTOR APPROXIMATION FOR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS被引量:3
2015年
This paper presents a strong predictor-corrector method for the numerical solution of stochastic delay differential equations (SDDEs) of ItS-type. The method is proved to be mean-square convergent of order min{1/2,p} under the Lipschitz condition and the linear growth condition, where p is the exponent of HSlder condition of the initial function. Stability criteria for this type of method are derived. It is shown that for certain choices of the flexible parameter p the derived method can have a better stability property than more commonly used numerical methods. That is, for some p, the asymptotic MS-stability bound of the method will be much larger than that of the Euler-Maruyama method. Numerical results are reported confirming convergence properties and comparing stability properties of methods with different parameters p. Finally, the vectorised simulation is discussed and it is shown that this implementation is much more efficient.
Yuanling NiuChengjian ZhangKevin Burrage
关键词:CONVERGENCE
求解非线性时滞双曲型偏微分方程的紧致差分方法及Richardson外推算法被引量:1
2013年
本文构造了一类求解非线性时滞双曲型偏微分方程的紧致差分格式,获得了该差分格式的唯一可解性,收敛性和无条件稳定性,收敛阶为O(Γ~2+h^4),并进一步对时间方向进行Richardson外推,使得收敛阶达到了O(Γ~4+h^4).数值实验表明了算法的精度和有效性.
张启峰张诚坚邓定文
关键词:紧致差分格式唯一性RICHARDSON外推
Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Volterra Delay-integro-differential Equations被引量:4
2012年
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.
Rui QICheng-jian ZHANGYu-jie ZHANG
ELEMENTARY BIFURCATIONS FOR A SIMPLE DYNAMICAL SYSTEM UNDER NON-GAUSSIAN LVY NOISES
2012年
Nonlinear dynamical systems are sometimes under the influence of random fluctuations. It is desirable to examine possible bifurcations for stochastic dynamical systems when a parameter varies.A computational analysis is conducted to investigate bifurcations of a simple dynamical system under non-Gaussian a-stable Levy motions, by examining the changes in stationary probability density functions for the solution orbits of this stochastic system. The stationary probability density functions are obtained by solving a nonlocal Fokker-Planck equation numerically. This allows numerically investigating phenomenological bifurcation, or P-bifurcation, for stochastic differential equations with non-Gaussian Levy noises.
陈慧琴段金桥张诚坚
共1页<1>
聚类工具0