熔盐堆中使用的结构材料除了要保证高温力学性还要在高温下与熔盐具有良好的相容性,本文拟采用涂层技术,在高温力学性能较好的镍基合金上沉积一层耐氟盐腐蚀的纯镍金属层,解决镍基合金与高温氟盐相容性差的问题。纯镍金属层采用脉冲电沉积的方法获得,系统研究了电流密度对涂层性能的影响,并通过扫描电镜(SEM)和X射线衍射(XRD)等测试手段对涂层微观形貌、结构特征等进行分析。结果表明,随着电流密度的增加,涂层厚度呈线性增加,电流密度为40 m A·cm-2时,涂层厚度达102μm;而涂层织构系数(TC)在不同电流密度下都呈现(111)晶面增大而(200)晶面减小的趋势,织构强弱变化的本质与镍晶体不同晶面的表面能大小、沉积过电位、Ni(OH)2和氢原子对生长晶面的吸附作用有关;涂层显微硬度随着电流密度增大呈现出增加趋势。
作为第四代反应堆堆型之一的钍基熔盐堆(TMSR,thorium molten salt reactor)具有固有安全性和防止核扩散等特点,由于使用熔盐做冷却剂和慢化剂,熔盐堆结构材料要具备高温下与氟盐良好的相容性,因此对材料性能也有更加苛刻的要求。目前作为TMSR结构材料的镍基合金对抗氟盐腐蚀的效果不明显,因此本研究采用了表面涂层技术在镍基合金表面获得一层防护层,以提高材料的耐氟盐腐蚀能力。通过电化学方法在镍基合金基体上沉积得到一层纯镍防护层,采用扫描电子显微镜(SEM)和背散射电子衍射(EBSD)等分析测试手段,研究了镀液体系、电沉积时间等对涂层性能的影响。研究发现,在氨基磺酸镍镀液体系中得到的涂层性能优于瓦特液体系,涂层厚度随沉积时间延长不断增大。同时对涂层的耐腐蚀性能进行了研究,研究结果表明涂层在700℃氟盐中400 h后未发生明显的腐蚀,因此利用表面涂层技术能够提高TMSR结构材料的耐氟盐腐蚀性能。