Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.
Cell adhesion and migration are basic physiolog- ical processes in living organisms. Cells can actively probe their mechanical micro-environment and respond to the ex- ternal stimuli through cell adhesion. Cells need to move to the targeting place to perform function via cell migration. For adherent cells, cell migration is mediated by cell-matrix adhesion and cell-cell adhesion. Experimental approaches, especially at early stage of investigation, are indispensable to studies of cell mechanics when even qualitative behaviors of cell as well as fundamental factors in cell behaviors are unclear. Currently, there is increasingly accumulation of ex- perimental data of measurement, thus a quantitative formula- tion of cell behaviors and the relationship among these fun- damental factors are highly needed. This quantitative under- standing should be crucial to tissue engineering and biomed- ical engineering when people want to accurately regulate or control cell behaviors from single cell level to tissue level. In this review, we will elaborate recent advances in the ex- perimental and theoretical studies on cell adhesion and mi- gration, with particular focuses laid on recent advances in experimental techniques and theoretical modeling, through which challenging problems in the cell mechanics are sug- gested.
Recent studies have shown that the triple-phase contact line has critical effect on the contact angle hysteresis of surfaces.In this study,patterned surfaces with various surface structures of different area fractions were prepared by electron etching on a silicon wafer.The advancing angle,receding angle and hysteresis angle of these surfaces were measured.Our experimental results showed that while the geometry of microstructure and contact line have a minor effect on the advancing angle,they have a significant effect on the receding angle and thus the hysteresis angle.We have shown that the effect of microstructure and the contact line can be described by a quantitative parameter termed the triple-phase line ratio.The theoretical predictions were in good agreement with our experimental results.
The stiffness and strength of extracellular (EC) region of cadherin are proposed to be two important mechanical properties both for cadherin as a mechanotransductor and for the formation of cell-cell adhesion. In this study, we quantitatively characterized the stiffness and strength of EC structure when it binds with different types of ions by molecular dynamics simulations. Resuits show that EC structure exhibits a rod-like shape with high stiffness and strength when it binds with the bivalent ions of calcium or magnesium. However, it switches to a soft and collapsed conformation when it binds with the monova- lent ions of sodium or potassium. This study sheds light on the important role of the bivalent ions of calcium in the physiological function of EC.