Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles as well as the microstructures,mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and in situ tensile tests.The results indicate that with the pulsed magnetic field assistance,the morphologies of the in situ particles are mainly with ball-shape,the sizes are in nanometer scale and the distributions in the matrix are uniform.The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.These are due to the strong vibration induced by the applied magnetic field in the aluminum melt,which in turn,accelerates the melt reactions.The effects of the magnetic field on the above contributions are discussed in detail.
The Al2O3(p)/Al nano-composites were fabricated from Al-K2ZrF6-Na2B4O7 system by sonochemistry in situ reaction. The fabrication mechanisms, including high intensity ultrasonic influence on microstructures and reinforcement particles-aluminum matrix interface, were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results show that the component of the as-prepared composites is Al2O3 reinforcement. The SEM analysis results indicate that Al2O3 particles are uniformly distributed in the aluminum matrix. The TEM results show that the morphologies of Al2O3 particles present in nearly sphere-shape, the sizes are in the range of 20-100 nm, and the interfaces are net and no interfacial outgrowth is observed. Analysis with secondary development Image-J software shows that Al2O3 recoveries are firstly improved and then decreased with increasing ultrasonic power. When the power is 0.4 kW, the distribution is the best, and a maximum number of particles are obtained. The reaction mechanisms were investigated.
CHEN Deng-binZHAO Yu-taoZHU Hai-yanZHENG MengCHEN Gang
(ZrB2+Al2O3+Al3Zr)/A356 composites were synthesized by melt direct reaction from A356-(K2ZrF6+KBF4+Na2B4O7) system.The phase compositions and the microstructures of the as-prepared composites were investigated by XRD,SEM and TEM.The results show that the reinforcements are composed of ZrB2 and Al2O3 ceramic phase particles and Al3Zr intermetallic particles.The ZrB2 particulates are easy to join together to form some particle clusters and distribute along the α(Al) grain boundary.The morphologies of the ZrB2 particulates are in hexagon-shape with the size of about 50 nm.The TEM investigation results of Al3Zr indicate that Al3Zr grows in the form of facet with the length-diameter ratio of about 20.The morphologies of Al2O3 particles are in rectangular-shape and ellipsoidal-shape,with the size of about 0.1 μm.In addition,the interfaces of the matrix and particles are net and no interfacial outgrowth is observed.
In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.