In this paper, a class of stochastic differential equations (SDEs) driven by semi-martingale with non-Lipschitz coefficients is studied. We investigate the dependence of solutions to SDEs on the initial value. To obtain a continuous version, we impose the conditions on the local characteristic of semimartingale. In this case, it gives rise to a flow of homeomorphisms if the local characteristic is compactly supported.
Weiyin Fei School of Math. and Physics, Anhui University of Technology and Science,Wuhu 241000, Anhui
Our aim is to present some limit theorems for capacities. We consider a sequence of pairwise negatively correlated random variables. We obtain laws of large numbers for upper probabilities and 2-alternating capacities, using some results in the classical probability theory and a non-additive version of Chebyshev's inequality and Boral-Contelli lemma for capacities.