This paper studies the least absolute deviation estimation of the high frequency financial autoregressive conditional duration (ACD) model. The asymptotic properties of the estimator are studied given mild regularity conditions. Furthermore, we develop a Wald test statistic for the linear restriction on the parameters. A simulation study is conducted for the finite sample properties of our estimator. Finally, we give an empirical study of financial duration.
By variational methods, for a kind of Yamabe problem whose scalar curvature vanishes in the unit ball BN and on the boundary S^N-1 the mean curvature is prescribed, we construct multi-peak solutions whose maxima are located on the boundary as the parameter tends to 0^+ under certain assumptions. We also obtain the asymptotic behaviors of the solutions.
In this paper, we are concerned with the elliptic system of{ -△u+V(x)u=g(x,v), x∈R^N, -△v+V(x)v=f(x,u), x∈R^N, where V(x) is a continuous potential well, f, g are continuous and asymptotically linear as t→∞. The existence of a positive solution and ground state solution are established via variational methods.
Line transect sampling is a very useful method in survey of wildlife population. Confident interval estimation for density D of a biological population is proposed based on a sequential design. The survey area is occupied by the population whose size is unknown. A stopping rule is proposed by a kernel-based estimator of density function of the perpendicular data at a distance. With this stopping rule, we construct several confidence intervals for D by difference procedures. Some bias reduction techniques are used to modify the confidence intervals. These intervals provide the desired coverage probability as the bandwidth in the stopping rule approaches zero. A simulation study is also given to illustrate the performance of this proposed sequential kernel procedure.
In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of the mean of ratios for missing data under uniform response is applied to the estimation of a finite population mean when the PPSWR sampling is used. The imputed estimator is valid under the corresponding response mechanism regardless of the model as well as under the ratio model regardless of the response mechanism. The approximately unbiased jackknife variance estimator is also presented. All of these results are extended to the case of non-uniform response. Simulation studies show the good performance of the proposed estimators.