多类分类是机器学习领域中的重要问题.目前普遍采用的多类分类方法:"one versus all"(OvA)直接利用"标准"的两类分类器重复构造两类分类器,导致计算复杂度较高、分类效率降低.基于支持向量机的多类分类器尽管无需重复构造两类分类器,但由于它对应于版本空间(version space)内最大超球的中心,所以当版本空间为非对称或比较狭长时,它的泛化能力显著降低.而基于版本空间解析中心的多类分类算法M-ACM克服了上述问题.从理论上分析了该分类器的泛化性能,给出了它的泛化误差上界,并进行了实验验证.
提出了一种MCBN(Monte Carlo loca liza tion boxed using non-anchor)定位算法。该算法建立在蒙特卡罗定位算法基础之上,利用两跳范围内可信任度权值最小且坐标确定的静态非锚节点,辅助网络中两跳范围内的锚节点构建最小锚盒,同时利用待定位节点上一时刻的位置信息和临时锚节点的特性增强样本过滤条件,进行快速抽样和样本过滤。仿真结果表明:MCBN同MCL和MCB算法相比,提高了节点定位精度,降低了节点能量损耗。