Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making.
LIU MiaoLI ChunlinHU YuanmanSUN FengyunXU YanyanCHEN Tan
As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using the computational fluid dynamics (CFD) model,landscape ecological principles and Geographical Information System (GIS).Based on the influencing factors of topography,building density and orientation,Shou Mountain,Longding Mountain and the Taizi River were selected as the urban ventilation paths to promote wind and oxygen circulation.Oxygen concentration around the green spaces gradually decreased with wind speed increase and wind direction change.There were obvious negative correlation relationships between the oxygen dispersion concentration and urban layout factors such as the building plot ratio and building density.Comparison with the field measurements found that there was significant correlation relationship between simulated oxygen concentration and field measurements (R 2=0.6415,p<0.001),moreover,simulation precision was higher than 92%,which indicated CFD model was effective for urban oxygen concentration simulation.Only less than 10% areas in Liaoyang City proper needed more green space urgently to improve oxygen concentration,mainly concentrated in Baitai and west Wensheng districts.Based on land-scape ecology principle,green space planning at different spatial scales were proposed to create a green space network system for Liaoyang City,including features such as green wedges,green belts and parks.Totally,about 2012 ha of green space need to be constructed as oxygen sources and ventilation paths.Compared with the current green space pattern,proposed green space planning could improve oxygen concentration obviously.The CFD model and research results in this paper could provide an effective way and theory support for sustainable development of urban green space.