Seasonal metrics and environmental responses to forestry soil surface CO2 emission effluxes among three types of lower subtropical forests were consistently monitored over two years with static chamber-gas chromatograph techniques among three types of lower subtropical forests. Results showed that annual CO2 effluxes (S+L) reached 3942.20, 3422.36 and 2163.02 CO2 g·m-2·a-1, respectively in the monsoon evergreen broadleaf forest, mixed broadleaf-coniferous forest and coniferous forest. All the three types of forests revealed the same characteristics of seasonal changes with the CO2 effluxes peaking throughout June to August. During this peaking period, the effluxes were 35.9%, 38.1% and 40.2% of the total annual effluxes, respectively. The CO2 emission process responding to the environmental factors displayed significantly different patterns in forestry soils of the three types of forests. The coniferous forest (CF) was more sensitive to temperature than the other two types. The Q10 values were higher, along with greater seasonal variations of the CO2 efflux, indicating that the structurally unique forestry ecosystem has disadvantage against interferences. All the three types of forestry CO2 effluxes showed significant correlation with the soil temperature (Ts), soil water content (Ms) and air pressure (Pa). However, stepwise regression analysis indicated no significant correlation between air pressure and the soil CO2 efflux. With an empirical model to measure soil temperature and water content in 5 cm beneath the soil surface, the CO2 effluxes accounting for 75.7%, 77.8% and 86.5% of the efflux variability respectively in soils of BF, MF and PF were calculated. This model can be better used to evaluate the CO2 emission of soils under water stress and arid or semi-arid conditions.
ZHANG Deqiang, SUN Xiaomin, ZHOU Guoyi, YAN Junhua, WANG Yuesi, LIU Shizhong, ZHOU Cunyu, LIU Juxiu, TANG Xuli, LI Jiong & ZHANG Qianmei South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured In three successional subtropical forests at the Dlnghuahan Nature Reserve (DNR) In southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and Its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared In successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates In the cool dry season (October-March). Soil respiration measured at these forests showed a clear Increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate In the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm^2 per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm^2 per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm^2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation In DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture Increased with progressive succession processes. This increase is caused, in part, by abundant respirators In advanced-successional forest, where more soil moisture is needed to maintain their activities.
Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.
YAN Jun-Hua ZHOU Guo-Yi ZHANG De-Qiang CHU Guo-Wei
Aims We aim to construct a comprehensive global database of litter decomposition rate(k value)estimated by surface floor litterbags,and investigate the direct and indirect effects of impact factors such as geographic factors(latitude and altitude),climatic factors(mean annual tempePlrature,MAT;mean annual precipitation,MAP)and litter quality factors(the contents of N,P,K,Ca,Mg and C:N ratio,lignin:N ratio)on litter decomposition.Methods We compiled a large data set of litter decomposition rates(k values)from 110 research sites and conducted simple,multiple regression and path analyses to explore the relationship between the k values and impact factors at the global scale.Important findings The k values tended to decrease with latitude(LAT)and lignin content(LIGN)of litter but increased with temperature,precipitation and nutrient concentrations at the large spatial scale.Single factor such as climate,litter quality and geographic variable could not explain litter decomposition rates well.However,the combination of total nutrient(TN)elements and C:N accounted for 70.2%of the variation in the litter decomposition rates.The combination of LAT,MAT,C:N and TN accounted for 87.54%of the variation in the litter decomposition rates.These results indicate that litter quality is the most important direct regulator of litter decomposition at the global scale.This data synthesis revealed significant relationships between litter decomposition rates and the combination of climatic factor(MAT)and litter quality(C:N,TN).The global-scale empirical relationships developed here are useful for a better understanding and modeling of the effects of litter quality and climatic factors on litter decomposition rates.