In this paper, we investigate the condensate fraction (CF) of fermionic pairs in the BCS-BEC crossover for three- component Fermi gas with both asymmetric interactions and unequal chemical potentials in two-dimensional free space. By using the functional-path-integral method, we have analytically derived the number densities and bound-state energy, from which the off-diagonal long-range order is analyzed in terms of the asymptotic behavior of the two-body density matrix. The explicit formula of CF is obtained as a function of the bound-state energy and population imbalance. It is demonstrated that the CF spectrum with respect to the bound-state energy can be used to characterize the quantum phase transition between the two kinds of Sarma phases as well as the transition from three-component to two-component superfluid. Moreover we obtain the same analytic formula of CF in the BCS superfluid phase as that of homogeneous Fermi gas with equal chemical potentials.
The full counting statistics of electron transport through two parallel quantum dots with antiparallel magnetic fluxes is investigated as a probe to detect the topological quantum-phase coherence (TQPC), which results in the characteristic oscillation of the zero-frequency cumulants including the shot noise and skewness. We show explicitly the phase transition of cumulant spectrum-patterns induced by the topology change of electron path-loops while the pattern period, which depends only on the topology (or Chern number), is robust against the variation of Coulomb interaction and interdot coupling strengths. Most importantly we report for the first time on a new type of TQPC, which is generated by the two- particle interaction and does not exist in the single-particle wave function interference. Moreover, the accurately quantized peaks of Fano-factor spectrum, which characterize the super- and sub-Poissonian shot noises, are of fundamental importance in technical applications similar to the superconducting quantum interference device.
In this paper we present both the classical and quantum periodic-orbits of a neutral spinning particle constrained in two-dimensional central-potentials with a cylindrically symmetric electric-field in addition,which leads to an effective non-Abelian gauge field generated by the spin-orbit coupling.Coherent superposition of orbital angular-eigenfunctions obtained explicitly under the condition of zero-energy exhibits the quantum-classical correspondence in the meaning of exact coincidence between classical orbits and spatial patterns of quantum wave-functions,which as a consequence results in the fractional quantization of orbital angular-momentum by the requirement of the same rotational symmetry of quantum and classical orbits.A non-Abelian anyon-model emerges in a natural way.