Magnetic shape memory alloys(MSMAs), both in condensed matter physics and in material science, are one of the most extensive research subjects. They show prompt response to the external magnetic field and give rise to large strain and have fine reversibility. The well-known example is Heusler-type MSMAs, which possess excellent multifunctional properties and have potential applications in energy transducer, actuator, sensor, microelectromechanical system, and magnetic refrigerator. In this paper, it is shown the recent progress in magnetostructural transformation, magnetic properties, shape deformation, magnetocaloric effect as well as magnetic field-induced shape memory effect in Ni–Mn–Ga, Ni Mn Z(Z = In, Sn, Sb),and Ni Co Mn Z(Z = In, Sn, Sb, Al) Heusler-type MSMAs.The remaining issues and possible challenges are briefly discussed.
Guang-Hua YuYun-Li XuZhu-Hong LiuHong-Mei QiuZe-Ya ZhuXiang-Ping HuangLi-Qing Pan
Anisotropic magnetoresistance (AMR) is an important physical phenomenon that has broad application potential in many relevant fields. Thus, AMR is one of the most attractive research directions in material science to date. In this article, we summarize the recent advances in AMR, including traditional permalloy AMR, tunnel AMR, ballistic AMR, Coulomb blockade AMR, anomalous AMR, and antiferromagnetic AMR. The existing problems and possible challenges in developing more advanced AMR were briefly discussed, and future development trends and prospects were also speculated.