A novel 1×2 polymer electro-optic(EO)switch based on seven vertical-turning serial-coupled microrings is proposed for dropping crosstalk and obtaining flat boxlike spectrum.The device structure,theory and formulation are presented,and the microring resonance order and coupling gaps are optimized.The switching voltage of the device for obtaining crosstalk lower than 30 dB under through state is decided to be about 1.86 V.Under the operation voltages of 0 V(drop state)and 1.86 V(through state),the switching performance is characterized,and the output spectrum is analyzed.The calculation results show that the crosstalk at through state and that at drop state are 30.2 dB and 53.2 dB,respectively,while the insertion losses are 0.86 dB and 3.18 dB,respectively.Owning to the seven serial-coupled microrings resonance structure,the proposed switch reveals the favorable boxlike spectrum compared with the simple device with only one microring,and thus the crosstalk under drop state is improved from 26.8 dB to 53.2 dB.Due to the low crosstalk,this device can be used in optical networks-on-chip for signal switching and routing.
By using poled-polymer/silicon slot waveguides in the active region and the Pockels effect of the poled-polymer,we propose a kind of Mach-Zehnder interferometer(MZI) electro-optic(EO) switch operated at 1 550 nm.Structural parameters are optimized for realizing normal switching function.Dependencies of switching characteristics on the slot waveguide parameters are investigated.For the silicon strip with dimension of 170 nm×300 nm,as the slot width varies from 50 nm to 100 nm,the switching voltage can be as low as 1.0 V with active region length of only 0.17–0.35 mm,and the length of the whole device is only about 770–950 μm.The voltage-length product of this switching structure is only 0.17–0.35 V·mm,and it is at least 19–40 times smaller than that of the traditional polymer MZI EO switch,which is 6.69 V·mm.Compared with our previously reported MZI EO switches,this switch exhibits some superior characteristics,including low switching voltage,compact device size and small wavelength dependency.
Structure and design are proposed for a kind of novel polymer Mach-Zehnder electro-optic(EO)switch using side-coupled M series-cascaded EO microrings.Formulations are proposed to analyze its switching characteristics.The dependences of the device’s performances on M are thoroughly analyzed and concluded.As the increase of M from 2 to 10,the switching voltages for the 9 devices are as low as 0.84 V,0.82 V,0.52 V,0.5 V,0.37 V,0.36 V,0.29 V,0.28 V and 0.24 V,respectively;whereas the crosstalks under bar state are within-20.79--6.53 d B and those under cross state are within-20.36--5.29 d B.The analysis results indicate that a smaller M is preferred for dropping the insertion loss and crosstalk,and a larger M should be selected to increase the optical bandwidth and minimize the switching energy.Generally,due to low switching voltage,the proposed device shows potential applications in optical networks-on-chip.
The analysis on the traditional asymmetric Mach-Zehnder interferometer (AMZI) optical filter based on two 3 dB directional couplers (DCs) shows that by adding an additional nonlinear phase generated by phase-generating coupler (PGC) to the original phase difference of the AMZI, its non-periodic frequency response can be modified, and a strictly periodic spectrum can be obtained. A novel structure of the AMZI filter using two PGCs before and after the AMZI region is proposed. With the needed free spectrum range (FSR) of 20 nm, the design and optimization of the device are performed using polymer SU-8 as the core and PMMA-GMA as the buffer. Though the insertion loss (IL) gets larger than that of the traditional AMZI filter, the FSR is nearly uniform as the expected period of 20 nm.
Eight-port optical routers are widely used in cluster-mesh photonic networks-on-chip(No C). By using 24 groups of cross-coupling two-ring resonators, a 1-stage 8-port polymer optical router is proposed, which can optically route 7 channel wavelength data streams along definite path in two-dimensional(2D) plane. Under the selected 7 channel wavelengths, the insertion losses along all routing paths are within 0.02-0.58 d B, the maximum crosstalk of all routing operations is less than-39 d B, and the device footprint size is about 0.79 mm2. Then, a universal novel structure and routing scheme of N-stage cascaded 8-port optical router are presented, which contains 7N channel wavelengths. Because of the good scalability in wavelength, this device shows potential application of wideband signal routing in optical No C.
Optimization and simulation are performed for a polymer four-port microring optical router with three channel wavelengths, which contains four-group basic routing elements with two different ring radii. In terms of microring resonance theory, coupled mode theory and transfer matrix method, expressions of output power of basic routing element and optical router are derived. In order to realize single-mode propagation, low optical transmission loss and phase match between microring waveguide and channel waveguide, the device parameters are optimized. With the selected three channel wavelengths of 1550 nm, 1552 nm and 1554 nm, characteristics are calculated and analyzed, including output spectrum, insertion loss and crosstalk. Simulation results indicate that the device has 12 possible I/O routing paths, the insertion losses of three channel wavelengths along their routing paths are within the range of 0.02-0.61 dB, the maximum crosstalk between the on-port along each routing path and other off-ports is less than-39 dB, and the device footprint size is ~0.13 mm2. Based on the proposed structure, through proper selection on ring radius, the routing structure can also be used for other channel wavelengths. Therefore, the designed structure shows wide applications in integrated optical networks-on-chip(NoC).
By using silicon-on-insulator(SOI) platform, 12 channel waveguides, and four parallel-coupling one-microring resonator routing elements, a non-blocking four-port optical router is proposed. Structure design and optimization are performed on the routing elements at 1 550 nm. At drop state with a power consumption of 0 m W, the insertion loss of the drop port is less than 1.12 d B, and the crosstalk between the two output ports is less than-28 d B; at through state with a power consumption of 22 m W, the insertion loss of the through port is less than 0.45 d B, and the crosstalk between the two output ports is below-21 d B. Routing topology and function are demonstrated for the four-port optical router. The router can work at nine non-blocking routing states using the thermo-optic(TO) effect of silicon for tuning the resonance of each switching element. Detailed characterizations are presented, including output spectrum, insertion loss, and crosstalk. According to the analysis on all the data links of the router, the insertion loss is within the range of 0.13—3.36 d B, and the crosstalk is less than-19.46 d B. The router can meet the need of large-scale optical network-on-chip(ONo C).
A 2×2 cross/bar polymer electro-optic(EO) routing switch is proposed,which is composed of two passive channel waveguides and two active EO polymer microrings with bending radius of only 13.76 μm.Detailed structure,theory and formulation are provided to characterize the output power of the switch.For obtaining fundamental mode propagation,small bending loss and phase-matching between channel waveguide and microring resonator(MRR) waveguide,the structural parameters are optimized under the wavelength of 1550 nm.Analyses and simulations on output power and output spectra indicate that a switching voltage of 5 V is desired to realize the exchange between cross state and bar state,the crosstalk under cross state and that under bar state are about 28.8 dB and 39.9 dB,respectively,and the insertion losses under these two states are about 2.42 dB and 0.13 dB,respectively.Compared with our four EO switches reported before,this device possesses ultra-compact size of 0.233 mm×0.233 mm as well as low crosstalk and insertion loss,and therefore it can serve as a good candidate for constructing large-scale optical routers or switching arrays in photonic network-on-chip(NoC).