The microstructure,martensitic transformation behavior,mechanical and shape memory properties of Ni56Mn25-xCrxGa19(x=0,2,4,6) alloys were investigated.Single phase of martensite with tetragonal structure is present for x=0,and dual-phase containing martensite and γ phase is observed for x≥2.The martensitic transformation peak temperatures decrease monotonically from 401 ℃ for x=0 to 197 ℃ for x=6.The introduction of γ phase by Cr addition is proved to be effective in improving the workability and ductility.The tensile stress and strain are 497 MPa and 8 % for x=4,and 454 MPa and 5.5 % for x=6,respectively.The shape memory strain values are 2.7 % under a residual strain of 4.5 % for x=4,and 1.9 % under a residual strain of 3.5 % for x=6,respectively.
The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a little β phase, and the grain size decreases obviously with increasing Si addition. When x = 0.2, small (Ti, Ta)3Si precipitates are formed at grain boundaries. With further increasing Si content, the amount of the precipitates gradually increases. The tensile and yield strength of Ti-55Ta-xSi alloys gradually increase with increasing Si addition, whereas elongation decreases. Ti-55Ta-0.1Si alloy exhibits the lowest elastic modulus and the best shape memory recoverable strain. It is revealed that the refinement of grain and the precipitation of (Ti, Ta)3Si phase are responsible to the changes of their mechanical and shape memory properties.