The calculations on the potential energy curves and spectroscopic constants of the ground and low-lying excited states of BrCl^+, one of the important molecular ions in environment science, have been performed by using the multireference configuration interaction method at high level of theory in quantum chemistry. Through analyses of the effects of the spin-orbit coupling interaction on the electronic structures and spectroscopic properties, the multiconflguration characteristic of the X^2Π ground state and low-lying excited states was established. The spin-orbit coupling splitting energy of the X^2 Π ground state was calculated to be 1814 cm^(-1), close to the experimental value 2070 cm^(-1). The spin-orbit coupling splitting energy of the ~2Π(II) exited state was predicted to be 766 cm^(-1). The transition dipole moments and Frank-Condon factors of the 3/2(III)-X3/2 and 1/2(III)-1/2(I) transitions were estimated, and the radiative lifetimes of the two transitions were briefly discussed.
In order to shed light upon the nature and mechanism of 4f-3d magnetic exchange interactions, a series of binuclear complexes of lanthanide(3+) and chromium(3+) with the general formula [Ln(L)5(H2O)2Cr(CN)6]·mL· nH2O (Ln=La (1), Ce (2), Pr (3), Nd (4); x=5, y=2, m=1 or 2, n=2 or 2.5; L=2-pyrrolidinone) and [Ln(L)4(H2O)3Cr(CN)6] ·nH2O (Ln=Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Er (10); x=4, y=3, m=0, n= 1.5 or 2.0; L=2-pyrrolidinone) were prepared and the X-ray crystal structures of complexes 2, 6 and 7 were determined. All the compounds consist of a Ln-CN-Cr unit, in which Ln^3+ in a square antiprism environment is bridged to an octahedral coordinated Cr^3+ ion through a cyano group. The magnetic properties of the complexes 3 and 6-10 show an overall antiferromagnetic behavior. The fitting to the experimental magnetic susceptibilities of 7 give g= 1.98, J=0.40 cm^-1, zJ'= -0.21 cm^-1 on the basis of a binuclear spin system (Scd=7/2, Scr=3/2), revealing an intra-molecular Gd^3+-Cr^3+ ferromagnetic interaction and an inter-molecular antiferromagnetic interaction. For 7 the calculation of quantum chemical density functional theory (DFT), combined with the broken symmetry approach, showed that the calculated spin coupling constant was 20.3 cm^-1, supporting the observation of weak ferromagnetic intra-molecular interaction in 7. The spin density distributions of 7 in both the high spin ground state and the broken symmetry state were obtained, and the spin coupling mechanism between Gd^3+ and Cr^3+ was discussed.
The reaction of [HN(n-C4H9)3]3[WV (CN)8]·4H2O, 4,4′-bipyridine dioxide(4,4′-dpdo), and MnCl2·4H2O or CuCl2·2H2O gives two new three-dimensional octacyanometalate-based bimetallic assemblies, {[Mn2 (4,4′-dpdo)(H2O)4] [WIV (CN)8]{·6H2O (1) and {[Cu2(4,4′-dpdo)(H2O)][W(CN)8]{·CH3OH·H2O (2). Compound 1 crystallizes in the orthorhombic system, space group P21212 with cell constants α=10.397(2) ?, b=11.321(2) ?, c=12.295(3) ? and Z=2, whereas 2 crystallizes in the monoclinic system, space group P21/c with cell constants a=13.038(3) ?, b=13.784(3) ?, c=13.225(3) ?, β=93.44(3)° and Z=4. In complex 1, each [WIV (CN)8]4? unit with a square antiprismatic geometry is connected to four Mn2 dimers through four bridging CN? ions forming wavelike alternating-W-Mn2-W-Mn2- layers, which are further linked through 4,4′-dpdo ligands coordinated to the Mn ions into a three-dimensional open framework. In complex 2, each [WIV (CN)8]4? ion still adopts a square antiprismatic geometry, whereas it bonds to seven copper ions through seven CN? ions leading to cage-like undulate layers further bridged by 4,4′-dpdo ligands into a three-dimensional network. Due to the bridging role of the long rigid 4,4′-dpdo ligand, there exist plenty of large cavities in the open frameworks of complexes 1 and 2 occupied by solvent clusters containing H2O or CH3OH molecules. To our knowledge, it is noted that 4,4′-dpdo displays a μ-4,4,4′,4′ mode, which was first experimentally observed, although predicted before. Magnetic studies show that complex 1 displays an antiferromagnetic coupling between MnII ions, while complex 2 exhibits a weak ferromagnetic interaction between CuII ions.
The magnetic coupling interactions of the nitronyl nitroxide radicals bound to diamagnetic(YⅢ) and paramagnetic(GdⅢ) rare earth ions in two model magnetic systems based on novel rare earth organic radical complexes Ln(hfac)3(NITPhOCH3)2(Ln=YⅢ 1,GdⅢ 2;hafc = hexafluoroacetylacetonate;NIT-PhOCH3 = 4'-methoxyo-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been investigated by density functional theory(DFT).The magnetic coupling mechanisms were also explored from the viewpoint of molecular orbital and spin density populations.DFT calculations show that the empty 4d-orbitals of YⅢ and 5d-orbitals of GdⅢ play an important role in the antiferromagnetic coupling between the two nitronyl nitroxide radical ligands,and that the ferromagnetic coupling between the GdⅢ ion and the radical magnetic centers can be attributed to the nearly complete localization of the isotropic 4f-shell and singly occupied magnetic orbital(π) of the nitronyl nitroxide.
REN Jie1,2,WANG BingWu1 & CHEN ZhiDa1 1 Beijing National Laboratory for Molecular Sciences,State Key Laboratory of Rare Earth Materials Chemistry and Applications,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China