Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions between N, P, and K of fertilizers on K status in soils have not been thoroughly investigated for optimizing N, P, and K fertilizer use efficiency. The influence of ammonium sulfate (AS), monocMcium phosphate (MCP), and potassium chloride application on K fractions in three typical soils of China was evaluated during 90-d laboratory soil incubation. The presence of AS significantly altered the distribution of native and added K in soils, while addition of MCP did not significantly affected K equilibrium in most cases. Addition of AS significantly increased water-soluble K (WSK), decreased exchangeable K (EK) in almost all the soils except the paddy soil that contained considerable amounts of 2:1 type clay minerals with K added, retarded the formation of fixed K in the soils with K added, and suppressed the release of fixed K in the three soils without K added. These interactions might be expected to influence the K availability to plants when the soil was fertilized with AS. To improve K fertilizer use efficiency, whether combined application of AS and K was to be recommended or avoided should depend on K status of the soil, soil properties, and cropping systems.
WANG Huo-Yan, ZHOU Jian-Min, DU Chang-Wen and CHEN Xiao-Qin State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)