Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the received signal to form data model with multi-invariance property,and multi-invariance ESPRIT algorithm for coherent DOA estimation is proposed in this paper.The proposed algorithm can resolve the DOAs of coherent signals and performs better in DOA estimation than that of ESPRIT-like algorithm.Meanwhile,it identifies more DOAs than ESPRIT-like algorithm.The simulation results demonstrate its validity.
Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.
In this paper, we address the problem of blind extraction and separation of a continuous chaotic signal from a linear mixture consisting of some chaotic signal and/or random signals. The problem of blind extraction is firstly formulated as a problem of the synchronization-based parameter estimation. Then an efficient least square based parameter estimation method is introduced to determine the desired extracting vector. The proposed blind signal extraction scheme is applicable to blind separation of chaotic signals by formulating the separation problem as the extraction of each chaotic source. Numerical simulation shows that the proposed approach can blindly extract and separate the desired chaotic signals and it is also robust to measurement noise.