In the paper, we study the positive solutions of a diffusive competition model with an inhibitor involved subject to the homogeneous Dirichlet boundary condition. The existence, uniqueness, stability and multiplicity of positive solutions are discussed. This is mainly done by using the local and global bifurcation theory.
This paper deals with a reaction-diffusion system with nonlinear absorption terms and boundary flux. As results of interactions among the six nonlinear terms in the system, some sufficient conditions on global existence and finite time blow-up of the solutions are described via all the six nonlinear exponents appearing in the six nonlinear terms. In addition, we also show the influence of the coefficients of the absorption terms as well as the geometry of the domain to the global existence and finite time blow-up of the solutions for some cases. At last, some numerical results are given.
In this paper, a nonlinear predator reproduction and prey competition model with diffusion is discussed. Some existence and non-existence results concerning non-constant positive steady-states are presented using topological degree argument and the energy method, respectively.