This paper mainly introduces the method of empirical likelihood and its applications on two different models. We discuss the empirical likelihood inference on fixed-effect parameter in mixed-effects model with error-in-variables. We first consider a linear mixed-effects model with measurement errors in both fixed and random effects. We construct the empirical likelihood confidence regions for the fixed-effects parameters and the mean parameters of random-effects. The limiting distribution of the empirical log likelihood ratio at the true parameter is X2p+q, where p, q are dimension of fixed and random effects respectively. Then we discuss empirical likelihood inference in a semi-linear error-in-variable mixed-effects model. Under certain conditions, it is shown that the empirical log likelihood ratio at the true parameter also converges to X2p+q. Simulations illustrate that the proposed confidence region has a coverage probability more closer to the nominal level than normal approximation based confidence region.
In this article, we use penalized spline to estimate the hazard function from a set of censored failure time data. A new approach to estimate the amount of smoothing is provided. Under regularity conditions we establish the consistency and the asymptotic normality of the penalized likelihood estimators. Numerical studies and an example are conducted to evaluate the performances of the new procedure.
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach.
In this paper, associations between two sets of random variables based on the projection pursuit (PP) method are studied. The asymptotic normal distributions of estimators of the PP based canonical correlations and weighting vectors are derived.
JIN Jiao & CUI HengJian Department of Statistics and Financial Mathematics, School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China
For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of β 0 and σ are shown to be asymptotically normal with the rate of convergence n ?1/2 and the B-spline Huber-Dutter estimator of g 0 achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of β 0 is competitive with its M-estimator without scale parameter and the ordinary least square estimator.