We report the synthesis and electrochemical sodium storage of cobalt disulfide (COS2) with various micro/nano-structures. CoS2 with microscale sizes are either assembled by nanoparticles (P-CoS2) via a facile solvothermal route or nano- octahedrons constructed solid (O-COS2) and hollow microstructures (H-CoS2) fabricated by hydrothermal methods. Among three morphologies, H-CoS2 exhibits the largest discharge capacities and best rate performance as anode of sodium-ion batteries (SIBs). Furthermore, H-CoS2 delivers a capacity of 690 mA.h.g 1 at 1 A·g 1 after 100 cycles in a potential range of 0.1-3.0 V, and N240 mA.h.g-1 over 800 cycles in the potential window of 1.0-3.0 V. This cycling difference mainly lies in the two discharge plateaus observed in 0.1-3.0 V and one discharge plateau in 1.0-3.0 V. To interpret the reactions, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are applied. The results show that at the first plateau around 1.4 V, the insertion reaction (COS2 + xNa* + xe NaxCoS2) Occurs; while at the second plateau around 0.6 V, the conversion reaction (NaxCoS2 + (4 - x) Na+ + (4 - x)e -~ Co + 2Na2S) takes place. This provides insights for electrochemical sodium storage of CoS2 as the anode of SIBs.
Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S_3-SNG) as a self-supported anode material for potassium-ion batteries. The rational structure design of integrating Sb_2S_3 nanoparticles with S,N-codoped graphene contributes to high reactivity, strong affinity, good electric conductivity, and robust stability of the composite, enabling superior K-storage performance. Moreover, the self-supported architecture significantly decreases the inactive weight of the battery, resulting in a high energy density of a Sb_2S_3-SNG/KVPO_4 F-C full cell to ~166.3 W h kg^(-1).
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.