A trial test method is introduced to form and magnify regular interface. Through researching on the carbonation of the magnifying interfacial transition zone (ITZ), the practical carbonation of the concrete can be simulated. Because the diffusion rate of CO2 in the ITZ is several times greater than that in the bulk paste, the diffusion rate and direction of CO2 will change and form a new carbonation front line. An interfacial effect zone caused by the ITZ will change the distribution of the complete carbonation zone and the partial carbonation zone. One of the important reasons for the formation of the partial carbonation zone was the existence of the interfacial effect zone. Consequently, the method mentioned in this paper provides a new way for researching on the microstructure of the cement based materials during the carbonation process.
The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.
In situ monitoring of the microstructure evolution of cement mortar in accelerated carbonation reaction for different carbonation ages was carried out by X-ray computed tomography (XCT). And the carbonation degrees of different time were measured by the volume fraction of uncarbonated and carbonated parts. Meanwhile, we presented a model for the carbonation of cement mortar by means of X-ray computed tomography (XCT). Based on the principles of chemical engineering processes, the reacted products become a solid inert ash layer. Finally, the model was validated with results of accelerated carbonation of cement mortar. The model is thus able to reasonably predict the carbonation ohenomena for accelerated conditions.