Two typical vibratory systems with impact are considered, one of which is a two-degree-of-freedom vibratory system impacting an unconstrained rigid body, the other impacting a rigid amplitude stop. Such models play an important role in the studies of dynamics of mechanical systems with repeated impacts. Two-parameter bifurcations of fixed points in the vibro-impact systems, associated with 1 : 4 strong resonance, are analyzed by using the center manifold and normal form method for maps. The single-impact periodic motion and Poincaré map of the vibro-impact systems are derived analytically. Stability and local bifurcations of a single-impact periodic motion are analyzed by using the Poincaré map. A center manifold theorem technique is applied to reduce the Poincaré map to a two-dimensional one, and the normal form map for 1:4 resonance is obtained. Local behavior of two vibro-impact systems, near the bifurcation points for 1:4 resonance, are studied. Near the bifurcation point for 1:4 strong resonance there exist a Neimark-Sacker bifurcation of period one single-impact motion and a tangent (fold) bifurcation of period 4 four-impact motion, etc. The results from simulation show some interesting features of dynamics of the vibro-impact systems: namely, the "heteroclinic" circle formed by coinciding stable and unstable separatrices of saddles, Tin, Ton and Tout type tangent (fold) bifurcations, quasi-periodic impact orbits associated with period four four-impact and period eight eight-impact motions, etc. Different routes of period 4 four-impact motion to chaos are obtained by numerical simulation, in which the vibro-impact systems exhibit very complicated quasiperiodic impact motions.
A vibro-impact forming machine with double masses is considered. The components of the vibrating system collide with each other. Such models play an important role in the studies of dynamics of mechanical systems with impacting components. The Poincaré section associated with the state of the impact-forming system, just immediately after the impact, is chosen, and the period n single-impact motion and its disturbed map are derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a two-dimensional map, and the normal form map associated with codimension two bifurcation of 1:2 resonance is obtained, Unfolding of the normal form map is analyzed. Dynamical behavior of the impact-forming system, near the point of codimension two bifurcation, is investigated by using qualitative analyses and numerical simulation. Near the point of codimension two bifurcation there exists not only Neimark-Sacker bifurcation associated with period one single-impact motion, but also Neimark-Sacker bifurcation of period two double-impact motion. Transition of different forms of fixed points of single-impact periodic orbits, near the bifurcation point, is demonstrated, and different routes from periodic impact motions to chaos are also discussed.