In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.
We consider the preservation property of the homomorphism and tensor product functors for quasi-isomorphisms and equivalences of complexes. Let X and Y be two classes of R-modules with Ext〉I(X,Y) = 0 for each object X ∈ X and each object Y ∈ Y. We show that if A,B ∈ C^(R) are X-complexes and U, V ∈ Cr(R) are Y-complexes, then U V Hom(A, U) Hom(A, Y); A B Hom(B, U) Hom(A, U). As an application, we give a sufficient condition for the Hom evaluation morphism being invertible.
This article is concerned with the strongly Gorenstein flat dimensions of modules and rings.We show this dimension has nice properties when the ring is coherent,and extend the well-known Hilbert's syzygy theorem to the strongly Gorenstein flat dimensions of rings.Also,we investigate the strongly Gorenstein flat dimensions of direct products of rings and(almost)excellent extensions of rings.
Let (S,≤) be a strictly totally ordered monoid which is also artinian, and R a right noetherian ring. Assume that M is a finitely generated right R-module and N is a left Rmodule. Denote by [[MS,≤]] and [NS,≤] the module of generalized power series over M, and the generalized Macaulay-Northcott module over N, respectively. Then we show that there exists an isomorphism of Abelian groups:Tori[[ RS,≤]]([[MS,≤]],[NS,≤])≌ s∈S ToriR (M,N).
We show that over a right coherent left perfect ring R, a complex C of left R-modules is Gorenstein projective if and only if C^m is Gorenstein projective in R-Mod for all m E Z. Basing on this we show that if R is a right coherent left perfect ring then Gpd(C) = sup{Gpd(C^m)|m ∈ Z} where Gpd(-) denotes Gorenstein projective dimension.
Let R be a ring. We consider left (or right) principal quasi-Baerness of the left skew formal power series ring R[[x;α]] over R where a is a ring automorphism of R. We give a necessary and sufficient condition under which the ring R[[x; α]] is left (or right) principally quasi-Baer. As an application we show that R[[x]] is left principally quasi-Baer if and only if R is left principally quasi- Baer and the left annihilator of the left ideal generated by any countable family of idempotents in R is generated by an idempotent.
In this paper, we study the closeness of strongly (∞)-hopfian properties under some constructions such as the ring of Morita context, direct products, triangular matrix, fraction ring etc. Also, we prove that if M[X] is strongly hopfian (resp. strongly co-hopfian) in R[X]-Mod, then M is strongly hopfian (resp. strongly co-hopfian) in R-Mod.
In this paper we characterize semirings all of whose p-injective semimodules are injective. We also classify monoids all of whose p-injective acts are injective.