The Cenozoic basalts from eastern China show commonly high Fe/Mn ratios (average = 68.6 ± 11.5) coupled with OIB-type trace element signature. The Cenozoic basalts form the northern margin and the southern margin of the North China Craton are studied in detail. Model calculations point out that the coupling feature of high Fe/Mn ratio with OIB-type trace element signature of these basalts cannot be produced by neither pyroxene/olivine crystallization nor remelting of previously melted mantle, but require partial melting of a garnet pyroxenite-rich mantle source. Combining these features of the Cenozoic basalts with the Phanerozoic lithospheric evolution of the eastern China, we suggest that the Cenozoic basalts were derived from a garnet pyroxenite-rich mantle source associated with continental crust delamination or oceanic crust subduction.
Trace element compositions of garnet, omphacite and apatite in ultrahigh-pressure eclogites from the main hole of the Chinese Continental Scientific Drilling (CCSD) project were in situ analyzed by the LA-ICP-MS method. Although both garnet and omphacite have homogeneous major element composi-tions, their trace elements show zonations from core to rim in rare earth elements. In particular, middle rare earth elements in the garnet, heavy rare earth elements in the apatite and all rare earth elements in the omphacite increase from core to rim, respectively. Based on dependence of partition coefficients on temperature and pressure in these minerals, we suggest that the trace elemental zonations in these minerals may record a short-lived heating event during exhumation.