提出一种基于旋转不变信号参数估计技术(Estimation of signal parameters via rotational invariance technique,ESPRIT)与模式搜索算法(Pattern search algorithm,PSA)的异步电动机转子故障检测新方法。模拟形成转子故障情况下的定子电流信号并以之检验ESPRIT性能。结果表明:即使对于短时信号,ESPRIT仍具备高频率分辨力,可以准确估计定子电流各个分量的频率;但对其幅值、初相角的估计欠缺准确性、稳定性。随后,采用PSA确定各个频率分量的幅值、初相角。对一台异步电动机完成了转子故障检测试验,结果表明:基于ESPRIT与PSA的异步电动机转子故障检测方法是切实可行的,并且因仅需短时信号即可达到高频率分辨力而适用于负荷波动情况。
将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。